skip to main content


Search for: All records

Creators/Authors contains: "Scholz, Paul"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    We present results from angular cross correlations between select samples of CHIME/FRB repeaters and galaxies in three photometric galaxy surveys, which have shown correlations with the first CHIME/FRB catalog containing repeating and nonrepeating sources: Wide-field Infrared Survey Explorer (WISE) × SCOS, DESI-BGS, and DESI-LRG. We find a statistically significant correlation (p-value <0.001, after accounting for look-elsewhere factors) between a sample of repeaters with an extragalactic dispersion measure (DM) > 395 pc cm−3and WISE × SCOS galaxies with redshiftz> 0.275. We demonstrate that the correlation arises surprisingly because of a statistical association between FRB 20200320A (extragalactic DM ≈ 550 pc cm−3) and a galaxy group in the same dark matter halo at redshiftz≈ 0.32. We estimate that the host halo, along with an intervening halo at redshiftz≈ 0.12, accounts for at least ∼30% of the extragalactic DM. Our results strongly motivate incorporating galaxy group and cluster catalogs into direct host association pipelines for FRBs with1localization precision, effectively utilizing the two-point information to constrain FRB properties such as their redshift and DM distributions. In addition, we find marginal evidence for a negative correlation at 99.4% confidence limit between a sample of repeating FRBs with baseband data (median extragalactic DM = 354 pc cm−3) and DESI-LRG galaxies with redshift 0.3 ≤z< 0.45, suggesting that the repeaters might be more prone than apparent nonrepeaters to propagation effects in FRB–galaxy correlations due to intervening free electrons over angular scales ∼0.°5.

     
    more » « less
  2. Abstract

    We present a search for host galaxy associations for the third set of repeating fast radio burst (FRB) sources discovered by the CHIME/FRB Collaboration. Using the ∼1′ CHIME/FRB baseband localizations and probabilistic methods, we identify potential host galaxies of two FRBs, 20200223B and 20190110C at redshifts of 0.06024(2) and 0.12244(6), respectively. We also discuss the properties of a third marginal candidate host galaxy association for FRB 20191106C with a host redshift of 0.10775(1). The three putative host galaxies are all relatively massive, fall on the standard mass–metallicity relationship for nearby galaxies, and show evidence of ongoing star formation. They also all show signatures of being in a transitional regime, falling in thegreen valley, which is between the bulk of star-forming and quiescent galaxies. The plausible host galaxies identified by our analysis are consistent with the overall population of repeating and nonrepeating FRB hosts while increasing the fraction of massive and bright galaxies. Coupled with these previous host associations, we identify a possible excess of FRB repeaters whose host galaxies haveMuMrcolors redder than the bulk of star-forming galaxies. Additional precise localizations are required to confirm this trend.

     
    more » « less
  3. Abstract We report the non-detection of dispersed bursts between 4 and 8 GHz from 2.5 hr of observations of FRB 20200120E at 6 GHz using the Robert C. Byrd Green Bank Telescope. Our fluence limits are several times lower than the average burst fluences reported at 600 and 1400 MHz. We conclude that these non-detections are either due to high-frequency bursts being weaker and/or scintillation-induced modulated. It is also likely that our observations were non-concurrent with any activity window of FRB 20200120E. 
    more » « less
  4. Abstract

    The CHIME/FRB project has detected hundreds of fast radio bursts (FRBs), providing an unparalleled population to statistically probe the foreground media that they illuminate. One such foreground medium is the ionized halo of the Milky Way (MW). We estimate the total Galactic electron column density from FRB dispersion measures (DMs) as a function of Galactic latitude using four different estimators, including ones that assume spherical symmetry of the ionized MW halo and ones that imply more latitudinal variation in density. Our observation-based constraints of the total Galactic DM contribution for ∣b∣ ≥ 30°, depending on the Galactic latitude and selected model, span 87.8–141 pc cm−3. This constraint implies upper limits on the MW halo DM contribution that range over 52–111 pc cm−3. We discuss the viability of various gas density profiles for the MW halo that have been used to estimate the halo’s contribution to DMs of extragalactic sources. Several models overestimate the DM contribution, especially when assuming higher halo gas masses (∼3.5 × 1012M). Some halo models predict a higher MW halo DM contribution than can be supported by our observations unless the effect of feedback is increased within them, highlighting the impact of feedback processes in galaxy formation.

     
    more » « less
  5. Abstract

    We present the discovery of 25 new repeating fast radio burst (FRB) sources found among CHIME/FRB events detected between 2019 September 30 and 2021 May 1. The sources were found using a new clustering algorithm that looks for multiple events colocated on the sky having similar dispersion measures (DMs). The new repeaters have DMs ranging from ∼220 to ∼1700 pc cm−3, and include sources having exhibited as few as two bursts to as many as twelve. We report a statistically significant difference in both the DM and extragalactic DM (eDM) distributions between repeating and apparently nonrepeating sources, with repeaters having a lower mean DM and eDM, and we discuss the implications. We find no clear bimodality between the repetition rates of repeaters and upper limits on repetition from apparently nonrepeating sources after correcting for sensitivity and exposure effects, although some active repeating sources stand out as anomalous. We measure the repeater fraction over time and find that it tends to an equilibrium of2.62.6+2.9% over our total time-on-sky thus far. We also report on 14 more sources, which are promising repeating FRB candidates and which merit follow-up observations for confirmation.

     
    more » « less
  6. Abstract

    The repeating FRB 20201124A was first discovered by CHIME/FRB in November of 2020, after which it was seen to repeat a few times over several months. It entered a period of high activity in April of 2021, at which time several observatories recorded tens to hundreds more bursts from the source. These follow-up observations enabled precise localization and host-galaxy identification. In this paper, we report on the CHIME/FRB-detected bursts from FRB 20201124A, including their best-fit morphologies, fluences, and arrival times. The large exposure time of the CHIME/FRB telescope toward the location of this source allows us to constrain its rates of activity. We analyze the repetition rates over different spans of time, constraining the rate prior to discovery to <3.4 day−1(at 3σ), and demonstrate a significant change in the event rate following initial detection. Lastly, we perform a maximum-likelihood estimation of a power-law luminosity function, finding a best-fit indexα= −4.6 ± 1.3 ± 0.6, with a break at a fluence threshold ofFmin16.6Jy ms, consistent with the fluence completeness limit of the observations. This index is consistent within uncertainties with those of other repeating FRBs for which it has been determined.

     
    more » « less
  7. Abstract

    We present a catalog of 536 fast radio bursts (FRBs) detected by the Canadian Hydrogen Intensity Mapping Experiment Fast Radio Burst (CHIME/FRB) Project between 400 and 800 MHz from 2018 July 25 to 2019 July 1, including 62 bursts from 18 previously reported repeating sources. The catalog represents the first large sample, including bursts from repeaters and nonrepeaters, observed in a single survey with uniform selection effects. This facilitates comparative and absolute studies of the FRB population. We show that repeaters and apparent nonrepeaters have sky locations and dispersion measures (DMs) that are consistent with being drawn from the same distribution. However, bursts from repeating sources differ from apparent nonrepeaters in intrinsic temporal width and spectral bandwidth. Through injection of simulated events into our detection pipeline, we perform an absolute calibration of selection effects to account for systematic biases. We find evidence for a population of FRBs—composing a large fraction of the overall population—with a scattering time at 600 MHz in excess of 10 ms, of which only a small fraction are observed by CHIME/FRB. We infer a power-law index for the cumulative fluence distribution ofα=1.40±0.11(stat.)0.09+0.06(sys.), consistent with the −3/2 expectation for a nonevolving population in Euclidean space. We find thatαis steeper for high-DM events and shallower for low-DM events, which is what would be expected when DM is correlated with distance. We infer a sky rate of[820±60(stat.)200+220(sys.)]/sky/dayabove a fluence of 5 Jy ms at 600 MHz, with a scattering time at 600 MHz under 10 ms and DM above 100 pc cm−3.

     
    more » « less